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The problem of stabilizing motion in controlled systems with a guaranteed estimate of the control quality is considered. It arises 
from the optimal stabil~eation problem when the conditions on the cost functional are relaxed: no minimization of this functional 
is required, it is only n(a~ssary for it not to exceed a certain limit. This enables the class of solvable problems to be extended 
compared to the class of optimal stabilization problems. The solution of the problem is based on Lyaponov's direct method using 
Lyapunov functions with derivatives of constant sign. Some of the results are new even in the case of the optimal stabilization 
problem. The following examples are considered: a holonomic mechanical system with time-dependent Lagrangian, a controlled 
linear mechanical system and the problem of using the gravitational moment to stabilize the controlled plane rotational motion 
of a satellite in an elliptic orbit. © 1997 Elsevier Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

W e  c o n s i d e r  a c o n t r o l l e d  sys tem,  t h e  m o t i o n  o f  w h i c h  is d e s c r i b e d  by t h e  sys tem o f  d i f fe ren t i a l  e q u a t i o n s  

= X(t, x, u) (1.1) 

where x = (xt . . . . .  x~) is an n-vector in the real linear space R n with norm II x II, u = ( U l ,  . . . , Ur) E 1~. 
The right-hand side X(t, x, u) (X(t, 0, 0) = 0 in (1.1), which is defined for a class U = {u(t, x) : u(t, 0) 
= 0} of control avlions u(t, x) ~ C(G), G = R + × F (R + = [0, +**[, F = {11 x II < H, H = const > 0}), 
is continuous and satisfies the conditions for the existence and uniquehess Of solutions in G. 

Let the integral 

I = ~ W(t, x[t], u[t])dt (1.2) 
to 

serve as an estimate of the control quality in this system for the transient subject to control u[t] along 
the corresponding trajectory x[t] of (1.1). The integrand W(t,x, u) in (1.2) is, in the general ease, a non- 
negative continuous function defined in G for u ~ U. 

Let us state the stabilization problem with guaranteed estimate of the control quality. 

Definition. A control action u = u°(t, x) is said to be stabilizing with a guaranteed estimate of quality 
P(t, x) if it ensures that the unperturbed motion x = 0 of (1.1) is asymptotically stable and the inequality 

I = 7 W(t, x ° [t], u ° [t])dt <<- P(t o, x o) 
to 

holds for each controlled motion x°(t), x°(to) = Xo. 

(1.3) 

2. A D D I T I O N A L  A S S U M P T I O N S  A N D  C O N S T R U C T I O N S  

0 Suppose that for some u (t, x) ~ Uthe  right-hand side X°(t, x) = X(t, x °, u°(t, x)) of (1.1) is bounded 
on each compact set and satisfies the Lipschitz condition uniformly in x with respect to t, that is, for 
any compact set K C F there are two constants 2LK = Z(K) and VK = v(K) such that 
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IIX°(t,x)ll ~< k r ,  XIl°(t, x2 ) -X° ( t ,  xt)ll~ < vr l lx  2 -x l l l  (2.1) 

Then X°(t, x) satisfies the precompactness conditions in G in some functional space Fa, [1] and 
with the system of equations (1.1) i = X°(t, x) one can associate [1] a family of limit systems i = O(t, 
x) for which the functions eb(t, x) are given by 

~(t,x) =dr lim ~ X°(t.  +x,x)dx) 
dt ~ ,, ~® " o 

Suppose that the integrand W°(t, x) = W(t, x, u°(t, x)) in (1.2) for u°(t, x) ~ U satisfies similar conditions 

IIW°(t, x)ll ~ ~x, IIW°(t, x2) - W°(t, Xl)ll~ ~txll x 2 -  xdl (2.2) 

where fir = ~(K) and IXK = Ix(K) are constants which exist for every compact set K C F. Then, by analogy, 
go(t,  x) satisfies the precompactness conditions in G in some functional space En  and one can associate 
with it a family of limit functions ~(t,  x) defined by 

d ' ] 
~(t ,X) = - - (  lim**~ W°(t, +z,x)d% 

at ~t,~ 0 

Following [2] we introduce 

ul--_av (aV)'x(,.x.u)+w,.,.,) B[V,t,x, 
= o t  + ~, 0x) 

Continuous monotonically increasing functions in the section [0, H] such that a(0) = 0, that is, Hahn 
type functions [3], will be denoted by a(ll x II). 

3. B A S I C  R E S U L T S  

We shall present a solution of the above problem on stabilization with a guaranteed estimate of quality 
based on Lyapunov's direct method.  

Theorem 1. Suppose that for system (1.1) with control quality estimate (1.2) a Lyapunov function 
1 0 V(t, x) e C (G) and a control function u = u (t, x) e U exist such that the following conditions hold 

1. V(t, x) is a positive-definite and admits of an infinitesimal upper  bound, al(ll x II) ~< V(t, x) ~< 
a2(ll x II); 

2. W(t, x, u°(ta x)) is a positive-definite function such that W(t, x, u°(t, x)) t> a3(ll x II); 
3. B[V, t, x, uU(t, x)] ~< 0. 

0 Then u (t, x) is a stabilizing control with a guaranteed quality estimate of P(to, Xo) = V(to, Xo) and the 
unperturbed motion x = 0 is uniformly asymptotically stable. 

The proof of this theorem is based on Lyapunov's theorem on asymptotic stability and resembles 
that of Krasovskii's theorem on optimal stabilization [2]. 

Using the method  of limit functions and equations [4], one can relax the conditions on V(t, x) and 
W(t, x, u(t, x)). Namely, W(t, x, u(t, x)) can be of constant sign, W(t, x, u(t, x)) t> 0, and for V(t, x) one 
can remove the condition that the function should admit of an infinitesimal upper  bound. 

Theorem 2. Suppose that a Lyapunov function V(t, x) ~ CI(G) and a control function u = u°(t, x) E 
U exist for system (1.1) with control quality estimate (1.2) such that 

1. V(t, x) is positive definite and admits of an infinitesimal upper bound oq(ll x II) ~< V(t, x) ~< ~(ll  x ID; 
2. B[V, t, x, u°(t, x)] ~< O; 
3. the right-hand side (X°(t, x) = X(t, x, u°(t, x)) of (1.1) and g°(t ,  x) = W(t, x, u°(t, x)) satisfy (2.1) 

and (2.2); 
4. for any limit pair (~, £~) corresponding to (X °, go)  the set {~(t, x) = O} does not contain any 

solutions of the limit system x = ~(t,  x), other than x = O. 
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Then u°(t, x) is a stabilizing control function with a guaranteed estimate of quality P(t, x) = V(t, x). 
The unperturbed motion x = 0 is uniformly asymptotically stable. 

Proof. By (1.1) and condition 2 of the theorem, for any function V(t, x) we have 

dV]dt<~ -W(t, x, u°(t, x)) ~< 0 (3.1) 

Taking into account that the function W(t, x, u) ~> 0 and that conditions 1, 3 and 4 are satisfied, by 
the theorem on aw.nnptotic stability [4] we find that the solution x = 0 of (1.1) is asymptotically stable. 

By the asymptotic stability of x = 0 and condition 1 of the: theorem we have lim V(T, x(T)) = 0 as 
T ---> +~ .  Integrating (3.1) from to to T and taking the limit as T ---> 0-, we obtain 

W(t,x~ou°(t))dt <~ V(t0,x0) = P ( t 0 , x 0 )  
to 

(3.2) 

The theorem is proved. 
If the identity 

B[V, t, x, u°(t, x)] -- 0 (3.3) 

is required in Theorem 2 in place of the second condition, and the condition 

B[V, t, x, u°(t, x)] ~< B[V, t, x, u°(t, x)] (3.4) 

is added for any other control function u*(t, x) • U, then we have a theorem optimal stabilization [5]. 

Theorem 3. For (1.1) with (1.2), that is, min I for u • U, let a Lyapunov function V(t, x) • CI(G) and 
a control function u = u°(t, x) • U exist such that conditions 1, 3 and 4 of Theorem 2 and conditions 
(3.3) and ~3.4) are satisfied. 

Then u (t, x) is a stabilizing control function that solves the optimal stabilization problem for (1.1). 
Also, the unpertm'bed motion x = 0 of (1.1) is uniformly asymptotically stable and 

I ° = ~ W(t,x~t)u°(t))dt = min~ W(t,x,u*(t,x))dt = V(t0,x0) 
to to 

for any u*(t, x) e U that solves the stabilization problem for the unperturbed motion x = 0 of 
(1.1). 

Theorem 4. Let V(t, x) e CI(G), V(t, O) = 0 be a Lyapunov function and u = u°(t, x) • U a control 
function for (1.1) with quality criterion (2.1) such that conditions 2 and 3 of Theorem 2 and the following 
conditions are satisfied: 

1. V(t, x) is positive definite and V(t, x) I> al(ll x II); 
2. there are ntmlbers H0 and H1 (0 < H0 < H 1 )  such that sup(V(t, x) when II x II < H0) < al(H1); 
3. there is at least one sequence tn ---> +** for which the limit pair (O, f~) corresponding to (X ~, 

W °) and the corresponding set V.~l(t, c) are such that for any c = Co = const > 0 the set {v~-l(t, c): 
c = Co} fq {fl(t, x) = 0} contains no solutions of the limit system i = O(t, x). 

Then u°(t, x) is a stabilizing control with guaranteed quality estimate P(t, x) = V(t, x) and the 
unperturbed motion x = 0 is asymptotically stable uniformly in x0. 

Proof. By (1.1) and condition 2 of Theorem 2 we have inequality (3.1) for the derivative of V(t, x). 
By conditions 1 and 2 it follows that the solution x = 0 of (1.1) is stable. The solutions of (1.1) from 
the domain F 1 = ,[11 x II < Ho} will be bounded, II x(t, to, Xo) II ~<//1 for all t ~> to. 

Let x = x(t, to, x0) be a solution of (1.1) in F 1. By condition 1 of the theorem and (3.1) V(t) = V(t, 
x(t, to, x0)) --> co a:s t ---> +-0. Let tn ---> +00 be a sequence determining (~, f~) and v~-l(t, c) such that 
x(tn) ---> x* as tn --~ +00. We form the sequence of functions Xn(t) = x(tn + t, to, Xo). By [1] the sequence 
of functions {xn(t ) = x(tn + t, to, Xo)}, which is defined for tn ~> to, will converge to a solution x = 
9 (0  : ]--'0, +**[ 4 .  F of the system x = ~(t,  x) uniformly in each interval [-T, T]. Taking the limit as 
tk ---> +-0, as in [4], we obtain 



44 ~ A . S .  Andreyev  and S. R Bezglasnyi 

~o(t) e {f~(t, x)  = O} n {V£1(t,c):c = Co} 

But  by condi t ion 3 of  the t h e o r e m  this is possible  only if Co = 0. So, a long each  solution x(t, to, x0): 
x0 E Fl,of, (1-1) • 

V(t, x(t, to, x0)) ---> 0 as t --} + 0o (3.5) 

I t  follows tha t  the  solut ion x = 0 is asymptot ical ly  stable uni formly  with respec t  to x0 [6]. 
In tegra t ing  (3.1) f rom to to +** and taking (3.5) into account,  we  obta in  (3.2). The  t h e o r e m  is 

proved.  

Example 1. We consider a linear controlled system, which is often encountered in robotics and is of practical 
interest, described by the equations 

+ P(t)x = S(t)u, x e R n, u e R n (3.6) 

where P(t) is a bounded symmetric positive definite (n x n)-matrix, 0 < Po <~ P(t) <~ P1, and S(t) is a bounded 
(n x n)-matrix of control actions u. 

Suppose that the quality of the transient is estimate by the functional (1.2), for which 

W(t,x,/q u) = krF(t)~ + urQ(t)u (3.7) 

where Q(t) is a bounded symmetric positive definite (n x n ),matrix and the bounded non-negative matrix F(t) satisfies 
the inequality 

F ~ 1p-IsQ-ISTp-I + 1 P - I P P - I  (3.8) 
4 2 

Using the Lyaptmov function 

V(t ,x , i )= l~trpq(t)k + 2xrEx 

(where E is the identity matrix and/ r l ( t )  is the inverse matrix to P(t)), using Theorem 2 we find that the control 
actions 

1 
u°(t, x, x) = -  ~ Q-l(t)Sr(t)p-I(t)x 

subject to the condition 

p-ISQ-tSTp-I +p-Ipp-t ~>yo E (70 =const>O) 

solve for (3.6) the problem of stabilizing the null state i = x = 0 with guaranteed estimate V(to, Xo) of functional 
(1.2) defined by (3.7) and (3.8). 

1 1 T 1 But if F is defined by 4F = P -  SQ- S P- + 2p-i~tP -1, these action solve the corresponding problem of optimal 
stabilization. 

Example 2. We consider the problem of using the gravitational moment to stabilize the controlled plane rotational 
motion of a satellite in an elliptic orbit. The equation of motion can be written in the form [7] 

c t " -  l(v)ot' + m(v)sin ct = 2/(v) + U (or = 20) 
(3.9) 

n 2 A - C  2esin v m(V)= n 2 =3 
/(v) = I +ecosv '  1 +ecosv '  B 

where 0 is the angle between Oz and Ozo and v is the true anomaly of the centre of mass O of the satellite in an 
eUiptic orbit with eccentricity e, 0 < e < 1. The derivative With respect to v is denoted by a prime; U is the control 
moment, Ox~v0z 0 is the orbital system of coordinates, and Ox, Oy and Oz are the principal central axes of inertia 
of the satellite with rnom~iltS A, B and C. During the motion the axis Oy of the satellite remains constant and 
coincides with the normal axis Oy 0 to the orbit plane. 

Let U be a control action that ensures the given rotational motion a = %(v), 1%(v) I ~< n -  6, 8 > 0. We define 
an additional control action u = U -  U0 so that the motion is asymptotically stable and the guaranteed estimate 
of quality 
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1= I (Iq x'2 +u2)dV' kl(V)~0' X----gI--O~0(V) (3.10) 
v0 

holds for the transient. Putting u = -k(v)x', we obtain from (3.9) the equation of motion in terms of perturbations 

+ (k(v) ,  l(v))x' + g(v, x)sin x = 0, g(v,x) = 2m(v)cos a0 (v) + x (3.11) x # 

2 2 

We seek a solution using the Lyapunov function 

V(v,x) = 1 ! x '2 +2(l-eos~) 
2 g(v,x) 

which is positive definite, since g(v, x) ~ go > 0, and admits of an infinitesimal upper bound. By Theorem 2 we 
find that the equation u ° = --k(v)x' ensures the stabilization of the plane rotational motion ct = ao(V) of the satellite 
about the centre of mass in an elliptic orbit with a guaranteed estimate of control quality V(v0, x0) by means of 
(3.10) if 

, 4 k ( v ) - 3 / ( v ) ) c o s - ~  ~> ¥o +a~<v)sin a°~ v) 

1 a0(v) , 3 ) k~ +(k(v)-r(v))  2 -< r(v) r (v ) -~ - tg - - -~ao (V) -~ / (v )  - % ,  r(v)= 2g(v,0) 

where ~/0 and e0 are positive constants. 

4. D E T E R M I N A T I O N  OF T H E  F O R M  OF T H E  I N T E G R A N D  IN 
T H E  Q U A L I T Y  C R I T E R I O N  A N D  T H E  C O N T R O L  A C T I O N S  IN T H E  

P R O B L E M  W I T H  A D D I T I O N A L  C O N T R O L  F O R C E S  

We consider the system of equations 

= X(t, x), x~ Rn; X(t, 0) = 0 (4.1) 

where X(t, x) is a continuous function that satisfies the conditions for the existence and uniqueness of  
solutions in G. 

Let there be a Lyapunov function V(t, x) ~. CI(G), V(t, 0) = 0 determining the stability of the 
solution x = 0 of  (4.1) and having a derivative V(t, x) ~< 0 by (4.1). 

Suppose that additional control forces of the form Xl(t, x, u) = M(t, x)u are applied to system (4.1), 
where u ~ R', M(t, :t) is an (n x r)-matrix, and the estimate of the integral (1.2) is a control quality estimate 
for the resulting control system 

= X(t, x) + M(t, x)u (4.2) 

We pose the fotlowing problem: it is required to construct the form of the integrand W(t, x, u) for 
which the Lyapunov function V(t, x) given for system (4.1) can define stabilization for (4.2) with a 
guaranteed quality estimate of P(t, x) -- V(t, x) of the control system (4.2). 

This problem is similar to the optimal stabilization problem formulated and solved by Rumyantsev 
[8] as a development of problems concerned with the analytic construction of results [9] and the selection 
of an optimizing fimctional [10]. 

Following [8], we represent the integrand in (1.2) in the form 

W(t, x, u) = F(t, x) + urR(t, x)u (4.3) 

where R(t, x) is a symmetric positive definite (r x r)-matrix and F(t, x) is a non-negative function to be 
determined. 

Substituting V(t, x) and W(t, x, u) into B[V, t, x, u(t, x)], we can determine the control action 

I R-'(t,x)Mr(t,x)(~---~(t,x)) u°(t'x) 2 (4.4) 
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which makes B[V, t, x, u] a min imum with respect to u (here R-l(t, x) is the inverse matrix to 
R(t,  x)). 

From the condition B[V, t, x, u°(t, x)] ~< 0 we find relations which must be satisfied by F(t, x) 

0 <~ F <~ - ~,"~-XXJ MR-IMT (4.5) 

These relations provido a wider choice' of the functional (1.2) with W(t, x, u) of  the form (4.3) as 
compared to the optimal stab'flization problem [7] when F(t, x) is defined by the strict equality 

F l( v] T 
- -4 toxx j MR-I MT( ) (4.6) 

By (4.2) with u°(t, x) from (4.4) the derivative of V(t, x) will be computed from the formula 

Applying Theorem 2, we obtain the following result. 

Theorem 5. Suppose that a positive definite function V(t, x) having derivative I)'(t, x) ~< 0 and admitting 
of an infinitesimal upper bound is known for system ~4.1) and the following c.~nditions are satisfied: 

1. the right-hand side X~(t, x) -- X(t, x) + M(t,  x)u (t, x) in (4.2) and W~(t, x) satisfy (2.1) and (2.2); 
2. for any limit pair (O, t2) corresponding to (X(t, x), W°(t, x)) the set {t2(t, x) = 0} contains no 

solutions of the limit system i = O(t, x) except x = 0. 
Then the control action (4.4) is stabilizing with a guaranteed estimate of quality V(t~ Xo) of the 

functional (1.2) with (4.3) and (4.5). 

Corollary. If it is required in Theorem 5 that B[V, t, x, u°(t, x)] = 0 and B[V, t, x, u(t, x)] I> 0 for any 
other control action u(t, x) e U, the remaining conditions being retained, then we have a solution of 
the problem of optimal stabilization of system (4.2) by a control action (4.4) with the minimum of the 
functional (1.2), (4.3), (4.6). 

Example. We consider a holonomic mechanical system described by Lagrange's equations of the second kind 

~tt ~"~q - ~ = 0 (4.7) 

for which the structure of the Lagrange function is L(t, q, (t) = L2 + L1 + Lo, where L 2 = ~tTh(q)(][2 is a quadratic 
form of the velocities q, L1 = BT(q)q is a linear form of the velocities, (!, and Lo = Lo(t, q) (Lo(t, 0) --- 0) satisfies 
the following conditions 

¢)L0/O q = 0 for q = 0, i)Lo/c)t ~ O, -Lo(t, q) ~> a(llqll) 

Such a system has a position of equilibrium q = ¢i = 0, which is stable because (L2 - Lo)" = --~Lol~t ~ O. 
We now formulate the problem of determining forces of the form Q = M(t, q, ¢i)u (M(t, q, d) is a bounded (n 

x r)-matrix) such that for the controlled system 

d C ~L ~ ~L (4.8) 

1. the equilibrium q = q = 0 is asymptotically stable; 
2. there is a guaranteed estimate of the quality of the control (1.2) with integrand 

W(t, q, q) ='F(t, q, q) + uTR(t, q, q)u (4.9) 
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where R(t, q, ¢]) is a bounded symmetric positive definite (r x O-matrix and F(t, q, ti) is a non-negative function to 
be determined. 

Using V -- L 2 - L0 as Lyapunov's function, by the results of Section 4 we have the control action 

1 I u°(t, q, / ! )= - ~R- (t, q, q)Mr(t, q, q)q (4.10) 

which solves the problem, along with the following conditions for choosing F(t,.q, q) 

! r 
0~<F(t ,q, / l )<~ ]qN( t , q ,q )q ,  N = MR-IM T (4.11) 

Furthermore, taking (4.10) into account, we have the bound 

d-~t ~ -161r N(t,q, il)il ~ 0 
2 

for the time derivative of V. For u = he(t, q, q) the limit system corresponding to.(4.8) has the form [4] 

d /  L0. +N'q÷Oq, C T -C 
~ ' t [ "~q  ) -  ~q = ~q = 

(4.12) 

where L~ and N* are the limit function and matrix corresponding to L 0 and N. 
Suppose that {(ITN*(t, q, ti) ti ffi 0} contains no solutions of (4.12) except q ffi ti ffi 0. Then by Theorem 5 the 

control action (4.10) solves the stabilization problemfor  (4.8) with a guaranteed estimate of the control quality 
P(t, q, ¢i) -- L2(q, ¢D .-L(t, q) by the functional (1.2), the integrand of which can be chosen from (4.9) and (4.11). 
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